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Tracking the Digital Footprints
of Personality
This paper reviews literature showing how pervasive records of digital footprints can be

used to infer personality.

By Renaud Lambiotte and Michal Kosinski

ABSTRACT | A growing portion of offline and online human

activities leave digital footprints in electronic databases.

Resulting big social data offers unprecedented insights into

population-wide patterns and detailed characteristics of the

individuals. The goal of this paper is to review the literature

showing how pervasive records of digital footprints, such as

Facebook profile, or mobile device logs, can be used to infer

personality, a major psychological framework describing

differences in individual behavior. We briefly introduce

personality and present a range of works focusing on

predicting it from digital footprints and conclude with a

discussion of the implications of these results in terms of

privacy, data ownership, and opportunities for future research

in computational social science.
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I . INTRODUCTION

In recent years, a growing portion of human activities such

as social interactions and entertainment have become

mediated by digital services and devices. The records of

those activities, or ‘‘big social data,’’ are changing the

paradigm in the social sciences, as it undergoes a transition

from small-scale studies, typically employing question-

naires or lab-based observations and experiments, to large-

scale studies, in which researchers observe the behavior of
thousands or millions of individuals and search for

statistical regularities and underlying principles [1]–[6].

These works provide empirical observations at an unprec-

edented scale offering the potential to radically improve

our understanding of the individuals and social systems.

One of the major insights offered by big social data

research relates to the predictability of individuals’

psychological traits from their digital footprint [3]. Ability
to automatically assess psychological profiles opens the

way for improved products and services as personalized

search engines, recommender systems [7], and targeted

online marketing [8]. On the other hand, however, it

creates significant challenges in the areas of privacy [9],

[10]. The main goal of this paper is to provide a review of

the works investigating the potential of the big social data

to predict a five-factor model of personalityVthe major
set of psychological traitsVsupporting further studies of

the relationship between personality and digital footprint

and its implications for privacy and new products and

services.

II . PERSONALITY

The most widespread and generally accepted model of

personality is the five-factor model of personality (FFM;

[11]). FFM was shown to subsume most known personality
traits, and it is claimed to represent the basic structure

underlying the variations in human behavior and prefer-

ences, providing a nomenclature and a conceptual

framework that unifies much of the research findings in

the psychology of individual differences. FFM includes the

following traits.

1) Openness is related to imagination, creativity,

curiosity, tolerance, political liberalism, and
appreciation for culture. People scoring high on

openness like change, appreciate new and unusual

ideas, and have a good sense of aesthetics.
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2) Conscientiousness measures the preference for an
organized approach to life in contrast to a

spontaneous one. Conscientious people are more

likely to be well organized, reliable, and consis-

tent. They enjoy planning, seek achievements, and

pursue long-term goals. Nonconscientious indivi-

duals are generally more easygoing, spontaneous,

and creative. They tend to be more tolerant and

less bound by rules and plans.
3) Extroversion measures a tendency to seek stimu-

lation in the external world, the company of

others, and to express positive emotions. Extro-

verts tend to be more outgoing, friendly, and

socially active. They are usually energetic and

talkative; they do not mind being at the center of

attention and make new friends more easily.

Introverts are more likely to be solitary or
reserved and seek environments characterized by

lower levels of external stimulation.

4) Agreeableness relates to a focus on maintaining

positive social relations, being friendly, compas-

sionate, and cooperative. Agreeable people tend to

trust others and adapt to their needs. Disagreeable

people are more focused on themselves, less likely

to compromise, and may be less gullible. They also
tend to be less bound by social expectations and

conventions and are more assertive.

5) Emotional stability (opposite referred to as

neuroticism) measures the tendency to experi-

ence mood swings and emotions, such as guilt,

anger, anxiety, and depression. Emotionally un-

stable (neurotic) people are more likely to

experience stress and nervousness, whereas emo-
tionally stable people (low neuroticism) tend to be

calmer and self-confident.

Research has shown that personality is correlated with

many aspects of life, including job success [12], attractive-

ness [13], drug use [14], marital satisfaction [15], infidelity

[16], and happiness [17]. The main limitations of classical

personality studies are, however, the size of the samples,

often too poor for statistical validation, and their strong
bias toward white, educated, industrialized, rich, and

democratic (WEIRD) people [18].

III . FROM OFFLINE TO ONLINE . . .

The increasingly prevalent access to digital media enables

large-scale online projects aimed at collecting personality

profiles and exploring their relations with digital foot-
prints. Personality has been investigated through different

types of online media, for instance, by focusing on website

browsing logs [2], [19], contents of personal websites [20],

music collections [21], or properties of Twitter profiles

[22], [23].

The most complete online social environment is

arguably Facebook, due to its popularity and rich social

and semantic data stored on its users’ profiles that can be

conveniently recorded. It is important to note that

Facebook profiles are increasingly becoming a channel
through which to form impressions about others, for

example, before dating [24] or before a job interview [25].

Moreover, research tends to show that a Facebook profile

reflects the actual personality of an individual rather than

an idealized role [26], and that personality can be

successfully judged by the others based on Facebook

profiles [27], [28]. These results suggest that personality is

manifested not only in the offline, but also online
behavior, and thus digital footprints can be used to

predict it.

The most popular data set used to study the

relationship between personality and digital footprint

comes from the myPersonality project. myPersonality was

a Facebook application set up by David Stillwell in 2007

that offered participants access to 25 psychological tests

and attracted over six million users. myPersonality users
received immediate feedback (see Fig. 1) on their results

and could donate their Facebook profile information to

research resulting in a database that, after anonymization,

is being shared with the academic community at

mypersonality.org, allowing for the study of hitherto

unanswered questions in a wide range of topics, such as

geographical variations in personality ([29]; see Fig. 2),

social networks [2], [22], [30], [31], privacy [32], language
[6] (see Fig. 3), predicting individual traits [33], [3],

computer science [34], happiness [35], music [36], and

delayed discounting [37].

IV. SOCIAL NETWORK STRUCTURE

Social network structure is one of the major types of digital
footprint left by the users, and a growing number of studies

shows that it is predictive of often intimate personal traits.

For instance, it is known that the location within a

Facebook friendship network is predictive of sexual

orientation [38]. Similarly, it is possible to accurately

detect users’ romantic partner by observing overlap in

social circles [39].

Fig. 1. Snapshot of a personality profile generated by the

myPersonality Facebook App, representing an individual that is liberal

and open minded (high openness), well-organized (high

conscientiousness), contemplative and happy with own company (low

extroversion), of average competitiveness (average

agreeableness), and laid back and relaxed (low neuroticism).
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Personality is expected to affect people’s social

network surroundings as it affects the types and number

of social ties formed by people. There are a number of

studies exploring this relationship. Neuroticism is usually
associated with negative social interactions, while extro-

version positively correlates with the size of the network

and greater social status [40], [41]. Results related to the

remaining traits tend to be inconsistent, perhaps due to

small sample sizes. More recently, Quercia et al. [31] used

myPersonality data set to study the relation between

sociometric popularity and personality traits, at a scale

several orders of magnitudes larger than in the previous

studies. They have shown that the strongest predictor for

the number of friends is extroversion, while other
personality traits do not play a significant role. On

average, extreme extroverts tend to have twice as many

friends as extreme introverts. A subsequent work [42]

went one step further and, for the first time, quantitatively

explained the way in which egocentric network topology is

shaped by personality. It confirmed that extroversion plays

a major role by showing that introverts are part of fewer

but larger communities, whereas extroverts tend to act as
bridges between more frequent but smaller communities

(see Fig. 4).

V. FACEBOOK LIKES

The Facebook profile of a user is not purely demographic,
as it also contains robust records of digital footprints. In

particular, Facebook likes exemplify a typical variety of

digital footprintVa connection between the user and a

content that is similar to other pervasive records such as

playlists (see Fig. 5), website browsing logs, purchase

records, or web search queries. A recent paper [3] based

on the myPersonality database and using relatively

straightforward methods (singular value decomposition
and linear regression) showed that Facebook likes are

highly predictive of personality and number of other

psychodemographic traits, such as age, gender, intelli-

gence, political and religious views, and sexual orientation

(see Fig. 6). The paper provided examples of likes most

strongly associated with given personality traits. For

example, users who liked ‘‘Hello Kitty’’ brand tended to
Fig. 3. Words, phrases, and topics most distinguishing extroversion

from introversion. Source: [6].

Fig. 2. Personality maps of U.S. states for neuroticism (upper) and

extroversion (lower). Dark (light) blue indicates values higher (lower)

than average. Figure based on myPersonality data.

Fig. 4. Typical egocentric networks of introverts (left) and extroverts

(right). Introverts tend to belong to fewer but larger and denser

communities, while extroverts tend to act as bridges between more

frequent, smaller, and overlapping communities. Connections between

Ego and his friends have not been depicted for the sake of clarity.
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have high openness, low conscientiousness, and low

agreeableness.

VI. SEMANTIC ANALYSIS

Similar predictions can be based on the textual analysis of

people’s posts and other samples of text. There is a long

tradition in using text to infer personality [44], [45], [46],

however, never at the scale presented in [6]. This study
applied differential language analysis to uncover features

distinguishing demographic and psychological attributes to

700 million words, phrases, and topic instances collected

by myPersonality from Facebook status updates of 75 000

participants. It showed a striking variations of language

driven by personality, gender, and age. This work has not

only confirmed existing observations (such as neurotic

people’s tendency to use the word ‘‘depressed’’), but also
posed new hypotheses (such as a relationship between

physical activity and low neuroticism).

VII. . . . AND BACK FROM ONLINE TO
OFFLINE

The proliferation of mobile-devices loaded with sensors

means that offline human activities are also increasingly

leaving digital footprint [47], [48]. For instance, physical
states such as running or walking can be inferred from

accelerometer data; colocation with other devices can be

detected using Bluetooth; geolocation can be established

using WiFi, Global Positioning System (GPS), or Global

System for Mobile (GSM) triangulation; and social

interactions can be measured by records of text messages

and phone calls. These data can be recorded by dedicated

apps, such as EmotionSense [49], which measures
emotional states based on the speech patterns and matches

it with physical activity, geolocation, and colocation with

other users. In the last few years, call data records (CDRs)

have been used to study the organization of social networks

and human mobility [50], [51], [52].

Similarly to digital footprints left in the online

environment, offline activities recorded with mobile

devices’ sensors reflect users’ personality. A recent study
combined CDRs with personality profiles of mobile device

users and identified a number of mobility and social factors

correlated with personality [53]. For instance, mobility

indicators, such as distance traveled, significantly correlate

with neuroticism, while social life indicators, such as the

size of the social network, correlated with extroversion, in

agreement with the previous results based on online digital

footprints.

Fig. 6. Prediction accuracy of regression for numeric attributes and

traits expressed by the Pearson correlation coefficient between

predicted and actual attribute values; all correlations are significant at

the p G 0:001 level. The red outline bars indicate the questionnaire’s

baseline accuracy, expressed in terms of test-retest reliability.

Source: [3].

Fig. 5. Dendrogram illustrating the structure of music tastes and its

relationship to the personality trait of openness among myPersonality

users. The structure was produced using hierarchical clustering of

the most popular Facebook likes from musician/band category. The

color scale represents the average openness of its subscribers, ranging

from conservative (cyan) to liberal (magenta). The height of the

nodes is proportional to the dissimilarity between individual likes or

clusters at both ends. The shorter is the path between two musicians or

bands, the larger overlap in audience. Source: [43].
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VIII. CONCLUSION

The main purpose of this paper was to review the evidence

of the relationship between digital footprint and person-
ality. We have shown that a wide range of pervasive and

often publicly available digital footprints such as Facebook

profiles or data from mobile devices can be used to infer

personality. As our life is increasingly interwoven with

digital services and devices, it is becoming critical to

understand the consequences of the apparent ability to

automatically and rapidly assess people’s psychological

traits.
Works cited in this paper indicate that the accuracy of

the personality predictions is moderate, with typical

correlation between the prediction and personality in the

range of r ¼ 0:2 and r ¼ 0:4. It has to be noted, however,

that the ground truth (i.e., personality scores) is also

merely an approximation of the underlying latent traits. For

example, the accuracy of the personality scales used in [3]

expressed as a correlation between scores achieved by the
same person in two points of time (test-retest reliability)

ranged between r ¼ 0:55 and r ¼ 0:75. It is reasonable to

expect that with, an increasing amount of data available and

improved methods, assessment accuracy will improve.

Predicting users’ personality can be used to improve

numerous products and services. Digital systems and

devices (such as online stores or cars) could be designed to

adjust their behavior to best fit their users’ inferred profiles
[54]. For example, a car could adjust the parameters of the

engine and the music to the personality and current mood

of the driver. Also, the relevance of marketing and product

recommendations could be improved by adding psycho-

logical dimensions to current user models. For example,

online insurance advertisements might emphasize security
when facing emotionally unstable (neurotic) users but

stress potential threats when dealing with emotionally

stable ones. Moreover, digital footprint may provide a

convenient and reliable way to measure psychological

traits at a low cost. Such automated assessment could

prove to be more accurate and less prone to cheating and

misrepresentation than traditional questionnaires.

Furthermore, it is likely that new insights into

individual differences in human behavior offered by big

social data will fuel the emergence of new, more accurate,

robust models describing individuals and societies [5]. The

translation of big social data into models and policies calls

for a new wave of multidisciplinary collaborations between

fields as diverse as psychology, social sciences, linguistics,

computer science, and applied mathematics (perhaps

under the banner of computational social psychology).

On the other hand, the results presented here may

have considerable negative implications because it can

easily be applied to large numbers of people without

obtaining their individual consent and without them

noticing. Commercial companies, governmental institu-

tions, or even one’s Facebook friends could use software

to infer personality (and other attributes, such as

intelligence or sexual orientation) that an individual

may not have intended to share. There is a risk that the

growing awareness of such digital exposure may decrease

their trust in digital technologies, or even completely

deter them from them. We hope that researchers, policy

makers, and customers will find solutions to address those

challenges and retain the balance between the promises

and perils of the Digital Age. h
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